Effects of Multi-Pass Turning on Stress Corrosion Cracking of AISI 304 Austenitic Stainless Steel

Austenitic stainless steels are extensively used in mechanical engineering. The machined surface integrity has an essential influence on the stress corrosion cracking (SCC) performance of stainless steels. In this paper, the effects of multi-pass turning on the SCC susceptibility of AISI 304 austeni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2022-10, Vol.13 (10), p.1745
Hauptverfasser: Zhang, Yansong, Xue, Huan, Li, Yongchun, Wang, Xuelin, Jiang, Xinli, Yang, Chongwen, Fang, Kewei, Zhang, Wenqian, Jiang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Austenitic stainless steels are extensively used in mechanical engineering. The machined surface integrity has an essential influence on the stress corrosion cracking (SCC) performance of stainless steels. In this paper, the effects of multi-pass turning on the SCC susceptibility of AISI 304 austenitic stainless steel were investigated by correlating the SCC crack density to the machining-induced surface characteristics in terms of roughness, micro-hardness, and residual stress. In the multi-pass turning, the surface roughness and residual stress were the least after the double pass turning, and the surface micro-hardness was the maximum after the triple-pass turning. The SCC susceptibility was evaluated after SCC tests in boiling MgCl2 solution. The results showed that the weakest SCC sensitivity was observed in double-pass turning 304 stainless steel, while the most susceptible SCC was found in triple-pass turning. Compared with the double-pass turning, the increase in SCC sensitivity of triple-pass turning was attributed to the larger roughness, higher micro-hardness and greater residual tensile stresses.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13101745