LH-YOLO: A Lightweight and High-Precision SAR Ship Detection Model Based on the Improved YOLOv8n

Synthetic aperture radar is widely applied to ship detection due to generating high-resolution images under diverse weather conditions and its penetration capabilities, making SAR images a valuable data source. However, detecting multi-scale ship targets in complex backgrounds leads to issues of fal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2024-11, Vol.16 (22), p.4340
Hauptverfasser: Cao, Qi, Chen, Hang, Wang, Shang, Wang, Yongqiang, Fu, Haisheng, Chen, Zhenjiao, Liang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic aperture radar is widely applied to ship detection due to generating high-resolution images under diverse weather conditions and its penetration capabilities, making SAR images a valuable data source. However, detecting multi-scale ship targets in complex backgrounds leads to issues of false positives and missed detections, posing challenges for lightweight and high-precision algorithms. There is an urgent need to improve accuracy of algorithms and their deployability. This paper introduces LH-YOLO, a YOLOv8n-based, lightweight, and high-precision SAR ship detection model. We propose a lightweight backbone network, StarNet-nano, and employ element-wise multiplication to construct a lightweight feature extraction module, LFE-C2f, for the neck of LH-YOLO. Additionally, a reused and shared convolutional detection (RSCD) head is designed using a weight sharing mechanism. These enhancements significantly reduce model size and computational demands while maintaining high precision. LH-YOLO features only 1.862 M parameters, representing a 38.1% reduction compared to YOLOv8n. It exhibits a 23.8% reduction in computational load while achieving a mAP50 of 96.6% on the HRSID dataset, which is 1.4% higher than YOLOv8n. Furthermore, it demonstrates strong generalization on the SAR-Ship-Dataset with a mAP50 of 93.8%, surpassing YOLOv8n by 0.7%. LH-YOLO is well-suited for environments with limited resources, such as embedded systems and edge computing platforms.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs16224340