New Riemann–Liouville Fractional-Order Inclusions for Convex Functions via Interval-Valued Settings Associated with Pseudo-Order Relations

In this study, we focus on the newly introduced concept of LR-convex interval-valued functions to establish new variants of the Hermite–Hadamard (H-H) type and Pachpatte type inequalities for Riemann–Liouville fractional integrals. By presenting some numerical examples, we also verify the correctnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2022-04, Vol.6 (4), p.212
Hauptverfasser: Srivastava, Hari Mohan, Sahoo, Soubhagya Kumar, Mohammed, Pshtiwan Othman, Kodamasingh, Bibhakar, Hamed, Yasser S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we focus on the newly introduced concept of LR-convex interval-valued functions to establish new variants of the Hermite–Hadamard (H-H) type and Pachpatte type inequalities for Riemann–Liouville fractional integrals. By presenting some numerical examples, we also verify the correctness of the results that we have derived in this paper. Because the results, which are related to the differintegral of the ϱ1+ϱ22 type, are novel in the context of the LR-convex interval-valued functions, we believe that this will be a useful contribution for motivating future research in this area.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract6040212