Application Fields, Positions, and Bioinformatic Mining of Non-active Sites: A Mini-Review
Active sites of enzymes play a vital role in catalysis, and researchhas been focused on the interactions between active sites and substrates to understand the biocatalytic process. However, the active sites distal to the catalytic cavity also participate in catalysis by maintaining the catalytic con...
Gespeichert in:
Veröffentlicht in: | Frontiers in chemistry 2021-05, Vol.9, p.661008-661008 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Active sites of enzymes play a vital role in catalysis, and researchhas been focused on the interactions between active sites and substrates to understand the biocatalytic process. However, the active sites distal to the catalytic cavity also participate in catalysis by maintaining the catalytic conformations. Therefore, some researchers have begun to investigate the roles of non-active sites in proteins, especially for enzyme families with different functions. In this mini-review, we focused on recent progress in research on non-active sites of enzymes. First, we outlined two major research methodswith non-active sites as direct targets, including understanding enzymatic mechanisms and enzyme engineering. Second, we classified the positions of reported non-active sites in enzyme structures and studied the molecular mechanisms underlying their functions, according to the literature on non-active sites. Finally, we summarized the results of bioinformatic analysisof mining non-active sites as targets for protein engineering. |
---|---|
ISSN: | 2296-2646 2296-2646 |
DOI: | 10.3389/fchem.2021.661008 |