Normal State Properties of Quantum Critical Metals at Finite Temperature
We study the effects of finite temperature on normal state properties of a metal near a quantum critical point to an antiferromagnetic or Ising-nematic state. AtT=0, bosonic and fermionic self-energies are traditionally computed within Eliashberg theory, and they obey scaling relations with characte...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2020-09, Vol.10 (3), p.031053, Article 031053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the effects of finite temperature on normal state properties of a metal near a quantum critical point to an antiferromagnetic or Ising-nematic state. AtT=0, bosonic and fermionic self-energies are traditionally computed within Eliashberg theory, and they obey scaling relations with characteristic power laws. Corrections to Eliashberg theory break these power laws but only at very small frequencies. Quantum Monte Carlo (QMC) simulations have shown that, already at much larger frequencies, there are strong systematic deviations from these predictions, casting doubt on the validity of the theoretical analysis. We extend Eliashberg theory to finiteTand argue that in theTrange accessible in the QMC simulations above the superconducting transition, the scaling forms for both fermionic and bosonic self-energies are quite different from those atT=0. We compare finiteTresults with QMC data and find good agreement for both systems. We argue that this agreement resolves the key apparent contradiction between the theory and the QMC simulations. |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.10.031053 |