Enhancement of Laccase Production by Optimizing the Cultural Conditions for Pleurotus sajor-caju in Solid-State Fermentation
Nowadays, a lot of interest has been given to the development of cost-effective and efficient enzyme production technologies. Laccase enzymes are widely used in biotechnological, environmental and industrial sectors. Due to the cost-effectiveness of the solid-state fermentation (SSF) process, it is...
Gespeichert in:
Veröffentlicht in: | Journal of pure & applied microbiology : an international research journal of microbiology 2021-06, Vol.15 (2), p.958-967 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nowadays, a lot of interest has been given to the development of cost-effective and efficient enzyme production technologies. Laccase enzymes are widely used in biotechnological, environmental and industrial sectors. Due to the cost-effectiveness of the solid-state fermentation (SSF) process, it is widely used to produce a broad range of biological products. In this study, optimization of moisture content, temperature, pH, and inoculum size were studied to enhance laccase production ability of Pleurotus sajor-caju in SSF by using One Factor At Time (OFAT) and Response Surface Methodology (RSM). OFAT was used as a baseline study for deducing the experimental design of RSM. The highest production of laccase enzyme (1450 U/g) by Pleurotus sajor-caju on wheat straw was observed at 26°C, 6.0 pH, 72.5 % moisture content, 7.5% inoculum size, 1% fructose and 0.5 % peptone. Unlike the conventional inoculum preparation method, here the inoculum was generated by the spawning method for SSF. The molecular weight of partially purified laccase from Pleurotus sajor-caju was estimated to be around 62 K Da using SDS PAGE. The activity staining of laccase was observed as a zymogram on Native PAGE using ABTS as a substrate. Lignin degradation of wheat straw and its structural disruption due to laccase was observed by Scanning Electron Microscopy (SEM). |
---|---|
ISSN: | 0973-7510 2581-690X |
DOI: | 10.22207/JPAM.15.2.54 |