Comparative Analysis of QCM and Electrochemical Aptasensors for SARS-CoV-2 Detection
The rapid and accurate detection of SARS-CoV-2, particularly its spike receptor-binding domain (S-RBD), was crucial for managing the COVID-19 pandemic. This study presents the development and optimization of two types of aptasensors: quartz crystal microbalance (QCM) and electrochemical sensors, bot...
Gespeichert in:
Veröffentlicht in: | Biosensors (Basel) 2024-09, Vol.14 (9), p.431 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid and accurate detection of SARS-CoV-2, particularly its spike receptor-binding domain (S-RBD), was crucial for managing the COVID-19 pandemic. This study presents the development and optimization of two types of aptasensors: quartz crystal microbalance (QCM) and electrochemical sensors, both employing thiol-modified DNA aptamers for S-RBD detection. The QCM aptasensor demonstrated exceptional sensitivity, achieved by optimizing aptamer concentration, buffer composition, and pre-treatment conditions, with a limit of detection (LOD) of 0.07 pg/mL and a linear range from 1 pg/mL to 0.1 µg/mL, and a significant frequency change was observed upon target binding. The electrochemical aptasensor, designed for rapid and efficient preparation, utilized a one-step modification process that reduced the preparation time to 2 h while maintaining high sensitivity and specificity. Electrochemical impedance spectroscopy (EIS) enabled the detection of S-RBD concentrations as low as 132 ng/mL. Both sensors exhibited high specificity, with negligible non-specific interactions observed in the presence of competing proteins. Additionally, the QCM aptasensor's functionality and stability were verified in biological fluids, indicating its potential for real-world applications. This study highlights the comparative advantages of QCM and electrochemical aptasensors in terms of preparation time, sensitivity, and specificity, offering valuable insights for the development of rapid, sensitive, and specific diagnostic tools for the detection of SARS-CoV-2 and other viruses. |
---|---|
ISSN: | 2079-6374 2079-6374 |
DOI: | 10.3390/bios14090431 |