A homotopy exact sequence for overconvergent isocrystals

In this article we prove exactness of the homotopy sequence of overconvergent fundamental groups for a smooth and projective morphism in characteristic p. We do so by first proving a corresponding result for rigid analytic varieties in characteristic $0$, following dos Santos [dS15] in the algebraic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2021-01, Vol.9, Article e71
Hauptverfasser: Lazda, Christopher, Pál, Ambrus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we prove exactness of the homotopy sequence of overconvergent fundamental groups for a smooth and projective morphism in characteristic p. We do so by first proving a corresponding result for rigid analytic varieties in characteristic $0$, following dos Santos [dS15] in the algebraic case. In characteristic p, we then proceed by a series of reductions to the case of a liftable family of curves, where we can apply the rigid analytic result. We then use this to deduce a Lefschetz hyperplane theorem for convergent fundamental groups, as well as a comparison theorem with the étale fundamental group.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2021.63