SBS Content Detection for Modified Asphalt Using Deep Neural Network

This study proposes a prediction model for accurately detecting styrene-butadiene-styrene (SBS) content in modified asphalt using the deep neural network (DNN). Traditional methods used for evaluating the SBS content are inaccurate and complicated because they are prone to produce errors by manual c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in materials science and engineering 2020, Vol.2020 (2020), p.1-13
Hauptverfasser: Zuo, Youxiang, Zhang, Zhengqi, Li, Jiange, Wang, Zhixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study proposes a prediction model for accurately detecting styrene-butadiene-styrene (SBS) content in modified asphalt using the deep neural network (DNN). Traditional methods used for evaluating the SBS content are inaccurate and complicated because they are prone to produce errors by manual computation. Feature data of SBS content are derived from the spectra, which are obtained by the Fourier-transform infrared spectroscopy test. After designing DNN, preprocessed feature data are utilized as training and testing data and are fed into the DNN via a feature matrix. Furthermore, comparative studies are conducted to verify the accuracy of the proposed model. Results show that the mean square error value decreased by 68% for DNN with noise and dimension reduction. The DNN-based prediction model showed that the correlation coefficient between the target value and the mean predicted value is 0.9978 and 0.9992 for training and testing samples, respectively, indicating its remarkable accuracy and applicability after training. In comparison with the standard curve method and the random forest method, the precision of DNN is greater than 98% for the same test conditions, achieving the best predicting performance.
ISSN:1687-8434
1687-8442
DOI:10.1155/2020/2513147