High Resolution 3-D Imaging of Mesospheric Sodium (Na) Layer Utilizing a Novel Multilayer ICCD Imager and a Na Lidar

Equipped with a 1-meter Cassegrain telescope with 6.2 meter focal length and an electronically gated Intensified Charge-Coupled Device (ICCD), a multilayer Na imager is designed and developed at Wuhan in China. This novel instrument has successfully achieved the first preliminary 3-D image of the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-11, Vol.12 (22), p.3678
Hauptverfasser: Cheng, Xuewu, Yang, Guotao, Yuan, Tao, Xia, Yuan, Yang, Yong, Wang, Jiqin, Ji, Kaijun, Lin, Xin, Du, Lifang, Liu, Linmei, Ji, Kaijie, Li, Faquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Equipped with a 1-meter Cassegrain telescope with 6.2 meter focal length and an electronically gated Intensified Charge-Coupled Device (ICCD), a multilayer Na imager is designed and developed at Wuhan in China. This novel instrument has successfully achieved the first preliminary 3-D image of the mesospheric Sodium (Na) layer when running alongside a Na lidar. The vertical Na layer profile is measured by the lidar, while the horizontal structure of the layer at different altitudes is measured by the ICCD imaging with a horizontal resolution of ~3.7 urad. In this experiment, controlled by the delay and width of the ICCD gating signal, the images of the layer are taken with three-second temporal resolution for every 5 km. The results show highly variable structures in both the vertical and horizontal directions within the Na layer. Horizontal images of the Na layer at different altitudes near both the permanent layer (80–100 km) and a sporadic Na layer at 117.5 km are obtained simultaneously for the first time. The Na number density profiles measured by the lidar and those derived from this imaging technique show excellent agreement, demonstrating the success of this observational technique and the first 3-D imaging of the mesospheric Na layer.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12223678