Bifurcation for a class of piecewise cubic systems with two centers

In this paper, a class of symmetric cubic planar piecewise polynomial systems are presented, which have two symmetric centers corresponding to two period annuli. By perturbation and considering piecewise first order Melnikov function, we show the existence of 18 limit cycles (not small-amplitude lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2022-01, Vol.2022 (46), p.1-12
Hauptverfasser: Ji, Guilin, Sun, Yangjian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a class of symmetric cubic planar piecewise polynomial systems are presented, which have two symmetric centers corresponding to two period annuli. By perturbation and considering piecewise first order Melnikov function, we show the existence of 18 limit cycles (not small-amplitude limit cycles) with the configuration ( 9 , 9 ) bifurcating from the two period annuli and 22 small-amplitude limit cycles with the configuration ( 11 , 11 ) , respectively.
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2022.1.46