Enhanced Crude Oil Sorption by Modified Plant Materials in Oilfield Wastewater Treatment
The treatment of oilfield wastewater with high crude oil content and complex composition is a problem requiring considerable attention. In order to effectively remove crude oil contained in wastewater, in this work, rice straw, as an oil-absorbing material, was modified and used as a sorbent for cru...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2022-11, Vol.27 (21), p.7459 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The treatment of oilfield wastewater with high crude oil content and complex composition is a problem requiring considerable attention. In order to effectively remove crude oil contained in wastewater, in this work, rice straw, as an oil-absorbing material, was modified and used as a sorbent for crude oil. Rice straw was modified with alkali and cetyltrimethylammonium chloride (CTAC) by simple substitution reaction. The adsorption capacity of modified rice straw for oil was evaluated. The results illustrate that the adsorption rate of rice straw for crude oil was increased from 0.83 to 8.49 g/g, with the optimal conditions of 18% NaOH reacted for 90 min at 50 °C and 2% CTAC reacted for 60 min at 20 °C. The proposed modification method could be used for different materials to enhance the adsorption rate. The results of the contact angle test show that the modified straw changed from hydrophilic to hydrophobic, which may be the main reason for the improvement in the oil absorption rate. Finally, the surface structure of rice straw was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption–desorption isotherms, which further confirmed the hydrophobicity of the modified rice straw. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules27217459 |