Recent Advances in Infrared Face Analysis and Recognition with Deep Learning

Besides the many advances made in the facial detection and recognition fields, face recognition applied to visual images (VIS-FR) has received increasing interest in recent years, especially in the field of communication, identity authentication, public safety and to address the risk of terrorism an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AI 2023-02, Vol.4 (1), p.199-233
Hauptverfasser: Mahouachi, Dorra, Akhloufi, Moulay A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Besides the many advances made in the facial detection and recognition fields, face recognition applied to visual images (VIS-FR) has received increasing interest in recent years, especially in the field of communication, identity authentication, public safety and to address the risk of terrorism and crime. These systems however encounter important problems in the presence of variations in pose, expression, age, occlusion, disguise, and lighting as these factors significantly reduce the recognition accuracy. To prevent problems in the visible spectrum, several researchers have recommended the use of infrared images. This paper provides an updated overview of deep infrared (IR) approaches in face recognition (FR) and analysis. First, we present the most widely used databases, both public and private, and the various metrics and loss functions that have been proposed and used in deep infrared techniques. We then review deep face analysis and recognition/identification methods proposed in recent years. In this review, we show that infrared techniques have given interesting results for face recognition, solving some of the problems encountered with visible spectrum techniques. We finally identify some weaknesses of current infrared FR approaches as well as many future research directions to address the IR FR limitations.
ISSN:2673-2688
2673-2688
DOI:10.3390/ai4010009