Time-Resolved XUV Absorption Spectroscopy and Magnetic Circular Dichroism at the Ni M2,3-Edges

Ultrashort optical pulses can trigger a variety of non-equilibrium processes in magnetic thin films affecting electrons and spins on femtosecond timescales. In order to probe the charge and magnetic degrees of freedom simultaneously, we developed an X-ray streaking technique that has the advantage o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-01, Vol.11 (1), p.325
Hauptverfasser: Hennes, Marcel, Rösner, Benedikt, Chardonnet, Valentin, Chiuzbaian, Gheorghe S., Delaunay, Renaud, Döring, Florian, Guzenko, Vitaliy A., Hehn, Michel, Jarrier, Romain, Kleibert, Armin, Lebugle, Maxime, Lüning, Jan, Malinowski, Gregory, Merhe, Aladine, Naumenko, Denys, Nikolov, Ivaylo P., Lopez-Quintas, Ignacio, Pedersoli, Emanuele, Savchenko, Tatiana, Watts, Benjamin, Zangrando, Marco, David, Christian, Capotondi, Flavio, Vodungbo, Boris, Jal, Emmanuelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrashort optical pulses can trigger a variety of non-equilibrium processes in magnetic thin films affecting electrons and spins on femtosecond timescales. In order to probe the charge and magnetic degrees of freedom simultaneously, we developed an X-ray streaking technique that has the advantage of providing a jitter-free picture of absorption cross-section changes. In this paper, we present an experiment based on this approach, which we performed using five photon probing energies at the Ni M2,3-edges. This allowed us to retrieve the absorption and magnetic circular dichroism time traces, yielding detailed information on transient modifications of electron and spin populations close to the Fermi level. Our findings suggest that the observed absorption and magnetic circular dichroism dynamics both depend on the extreme ultraviolet (XUV) probing wavelength, and can be described, at least qualitatively, by assuming ultrafast energy shifts of the electronic and magnetic elemental absorption resonances, as reported in recent work. However, our analysis also hints at more complex changes, highlighting the need for further experimental and theoretical studies in order to gain a thorough understanding of the interplay of electronic and spin degrees of freedom in optically excited magnetic thin films.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11010325