Optimization of Vibration Characteristics of Fused Deposition Modeling Color 3D Printer Based on Modal and Power Spectrum Method
To improve the accuracy of the Fused Deposition Modeling (FDM) color 3D printer in printing color pieces, the vibration characteristics were studied. Firstly, the models of the FDM color 3D printer were qualitatively simplified by mechanics theory to provide theoretical support for dynamic character...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-10, Vol.9 (19), p.4154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve the accuracy of the Fused Deposition Modeling (FDM) color 3D printer in printing color pieces, the vibration characteristics were studied. Firstly, the models of the FDM color 3D printer were qualitatively simplified by mechanics theory to provide theoretical support for dynamic characteristics of the structure, and the finite element modal analysis was performed by the ANSYS (It is an engineering simulation and 3D design software) Workbench to obtain the natural frequency and mode shape displacement of the FDM color 3D printer. Then, the power spectrum of the vibration signal of the previous FDM color 3D printer was measured through frequency domain analysis, and the resonance positions of the 3D printer were obtained by comparing the finite element analysis with experimental analysis. Finally, the design of the color 3D printer was optimized based on the analysis. The results indicate that the optimized scheme can effectively improve the resonance characteristics of the device and reduce the overall modal displacement. The actual experiment of the 3D printer demonstrates that the accuracy of the optimized device has been improved, which has crucial reference significance for the development of the FDM color 3D printer. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9194154 |