Long-term carbaryl exposure leads to behavioral abnormalities and reproductive toxicity in male marine medaka through apoptosis-mediated HPA and HPG axes dysregulation

Carbaryl is a widely used carbamate pesticide that has been detected in the marine environment, but its effects on marine fish are still unknown. This study was aimed to investigate the effects of long-term exposure of carbaryl on male marine medaka. For this purpose, we set up five exposure concent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2024-08, Vol.281, p.116584, Article 116584
Hauptverfasser: Chen, Yuxin, Jiang, Qun, Zhang, Yuxuan, Zuo, Zhenghong, Yang, Chunyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbaryl is a widely used carbamate pesticide that has been detected in the marine environment, but its effects on marine fish are still unknown. This study was aimed to investigate the effects of long-term exposure of carbaryl on male marine medaka. For this purpose, we set up five exposure concentration groups of 0, 0.1, 1, 10, and 100 µg/L for 180 days. On the one hand, we observed increased aggression and decreased ability to avoid predators in males after exposure, which was affected by the levels of HPA-axis hormones, especially decreased cortisol level. On the other hand, after exposure, HPG axis hormone levels and gene transcription levels were disturbed. Males exhibited a decreased gonadosomatic index and a notable reduction in mature sperm proportion and the F1 generation displayed a significant increase in malformation rate. Additionally, the number of apoptotic cells and the transcription level of apoptosis-related genes in the brains of male marine medaka substantially increased after exposure. Apoptosis of brain cells may be responsible for the disturbance of HPA and HPG axes, consequently leading to behavioral and reproductive abnormalities. These findings provide novel insights into evaluating the toxic effects of carbaryl on male marine medaka and emphasizing the criticality of exploring the potential environmental risks posed by carbaryl in the marine environment, thus providing toxicity value basis for further strengthening marine environmental monitoring and the protection of biological resources. [Display omitted] •Carbaryl caused abnormal aggression and antipredator behavior of male marine medaka.•Carbaryl led to the decreased mature sperm and reproductive damage.•The interference of HPA and HPG axes induced behavior and reproductive disorders.•The apoptosis of brain cells caused the disturbance of HPA and HPG axes.
ISSN:0147-6513
1090-2414
1090-2414
DOI:10.1016/j.ecoenv.2024.116584