Selective Catalytic Reduction of NOx with NH3 on Cu-, Fe-, and Mn-Zeolites Prepared by Impregnation: Comparison of Activity and Hydrothermal Stability

Cu-, Fe-, and Mn-zeolite (SSZ-13, ZSM-5, and BEA) catalysts have been prepared by incipient wetness impregnation and characterized by N2 physisorption, H2-TPR, NH3-TPD, and XPS methods. Both metal and zeolite support influence the deNOx activity and hydrothermal stability. Cu-zeolites and Mn-zeolite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemistry 2018-01, Vol.2018 (2018), p.1-11
Hauptverfasser: Fehrmann, Rasmus S. N., Jensen, Anker Degn, Schill, Leonhard, Putluru, Siva Sankar Reddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cu-, Fe-, and Mn-zeolite (SSZ-13, ZSM-5, and BEA) catalysts have been prepared by incipient wetness impregnation and characterized by N2 physisorption, H2-TPR, NH3-TPD, and XPS methods. Both metal and zeolite support influence the deNOx activity and hydrothermal stability. Cu-zeolites and Mn-zeolites showed medium temperature activity, and Fe zeolites showed high temperature activity. Among all the catalysts, Cu-SSZ-13 and Fe-BEA are the most promising hydrothermally resistant catalysts. Fresh and hydrothermally treated catalysts were further examined to investigate the acidic and redox properties and the zeolite surface composition. Increased total acidity after metal impregnation and loss of acidity due to hydrothermal treatment were observed in all the catalysts. Hydrothermal treatment resulted in migration of metal or in strong metal support interations, whereby changes in reduction patterns are observed.
ISSN:2090-9063
2090-9071
DOI:10.1155/2018/8614747