N-Octyl Caffeamide, a Caffeic Acid Amide Derivative, Prevents Progression of Diabetes and Hepatic Steatosis in High-Fat Diet Induced Obese Mice
The underlying pathological mechanisms of diabetes are complicated and varied in diabetic patients, which may lead to the current medications often failing to maintain glycemic control in the long term. Thus, the discovery of diverse new compounds for developing medicines to treat diabetes and its c...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-08, Vol.23 (16), p.8948 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The underlying pathological mechanisms of diabetes are complicated and varied in diabetic patients, which may lead to the current medications often failing to maintain glycemic control in the long term. Thus, the discovery of diverse new compounds for developing medicines to treat diabetes and its complications are urgently needed. Polyphenols are metabolites of plants and have been employed in the prevention and treatment of a variety of diseases. Caffeic acid phenethyl ester (CAPE) is a category of compounds structurally similar to polyphenols. In this study, we aimed to investigate the antidiabetic activity and potential molecular mechanisms of a novel synthetic CAPE derivative N-octyl caffeamide (36M) using high-fat (HF) diet induced obese mouse models. Our results demonstrate that 36M prevented the progression of diabetes in the HF diet fed obese mice via increasing phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and inhibiting expression of protein tyrosine phosphatase 1B (PTP1B). We also found that 36M could prevent hepatic lipid storage in the HF diet fed mice via inhibition of fatty acid synthase and lipid droplet proteins, including perilipins and Fsp27. In conclusion, 36M is a potential candidate compound that can be developed as AMPK inhibitor and PTP1B inhibitor for treating diabetes and hepatic steatosis. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23168948 |