Site dependence of surface dislocation nucleation in ceramic nanoparticles

The extremely elevated strength of nanoceramics under compression arises from the necessity to nucleate highly energetic dislocations from the surface, in samples that are too small to contain pre-existing defects. Here, we investigate the site dependence of surface dislocation nucleation in MgO nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2021-05, Vol.7 (1), p.1-7, Article 60
Hauptverfasser: Amodeo, Jonathan, Maras, Emile, Rodney, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The extremely elevated strength of nanoceramics under compression arises from the necessity to nucleate highly energetic dislocations from the surface, in samples that are too small to contain pre-existing defects. Here, we investigate the site dependence of surface dislocation nucleation in MgO nanocubes using a combination of molecular dynamics simulations, nudged-elastic-band method calculations and rate theory predictions. Using an original simulation setup, we obtain a complete mapping of the potential dislocation nucleation sites on the surface of the nanoparticle and find that, already at intermediate temperature, not only nanoparticle corners are favorable nucleation sites, but also the edges and even regions on the side surfaces, while other locations are intrinsically unfavorable. Results are discussed in the context of recent in situ TEM experiments, sheding new lights on the deformation mechanisms happening during ceramic nanopowder compaction and sintering processes.
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-021-00530-8