Application of Temperature Programmed Oxidation-Infrared Technique in the Analysis of Sulfur Occurrence and Genesis in Phosphate Rock

In this study, a temperature programmed oxidation-infrared (TPO-IR) technique was improved and applied in the analysis of sulfur occurrence and genesis in phosphate rock. Phosphate rocks from three regions (KYP, ZJP, and WAP) were selected for the detection of sulfur species by TPO-IR combined with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical methods in chemistry 2022-07, Vol.2022, p.1-13
Hauptverfasser: Xu, Qiuyuan, Tang, Shiyun, Tang, Anjiang, Tian, Yazhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a temperature programmed oxidation-infrared (TPO-IR) technique was improved and applied in the analysis of sulfur occurrence and genesis in phosphate rock. Phosphate rocks from three regions (KYP, ZJP, and WAP) were selected for the detection of sulfur species by TPO-IR combined with XRD, SEM, EDS, and XPS characterization. TPO-IR results show that the total sulfur contents of the three phosphate rocks were 2.14% for KYP, 1.18% for ZJP, and 1.06% for WAP. In the low-temperature area (1000°C), the TPO-IR curves suggest that sulfate is the main sulfur species in the three phosphate rocks. Typically, the characteristic temperature near 1070oC belongs to MgSO4, and the characteristic temperature near 1290°C belongs to CaSO4. Due to the incomplete TPO-IR database of sulfur reference materials at present, it is not possible to assign all sulfur species in high-temperature areas. However, in a sense, this research provides theoretical basis and experimental support for the application of the TPO-IR technique for the detection of sulfur species in other solid minerals.
ISSN:2090-8865
2090-8873
DOI:10.1155/2022/3255760