Avian nidopallium caudolaterale mediates decision-making during goal-directed navigation
Previous work demonstrates that nidopallium caudolaterale, which is considered to be an analog of the mammalian prefrontal cortex, participates in goal-directed navigation in pigeons. However, its role remains unclear. To clarify its role, two goal-directed navigation tasks in plus-maze were designe...
Gespeichert in:
Veröffentlicht in: | Journal of integrative neuroscience 2021-12, Vol.20 (4), p.945-954 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous work demonstrates that nidopallium caudolaterale, which is considered to be an analog of the mammalian prefrontal cortex, participates in goal-directed navigation in pigeons. However, its role remains unclear. To clarify its role, two goal-directed navigation tasks in plus-maze were designed, in which the goal location of one is random, and the other is fixed, i.e., the random-goal task and the fixed-goal task. The animals were trained to run from the starting location to the goal location in accordance with the cue in the plus-maze. The goal location is variable for the random-goal task but unchanged for the fixed-goal task. The results have demonstrated that the time point of nidopallium caudolaterale neuron response is consistent with decision-making. During the decision-making, the firing rates significantly increased in two tasks, which can also decode the direction of upcoming movement in the random-goal task. However, the location of decision-making is different between the tasks mentioned above. The decision-making window is at the intersection in the random-goal task, which is a departure in the fixed-goal task. In addition, these results also provide evidence that the neural activities obtained from the nidopallium caudolaterale may contain the decision-making information during goal-directed navigation. These results suggest that the avian nidopallium caudolaterale and the mammalian prefrontal cortex may play a similar role in goal-directed spatial decision-making. Additionally, these also may provide some support to understand the neural mechanism of decision-making for different species. |
---|---|
ISSN: | 0219-6352 1757-448X |
DOI: | 10.31083/j.jin2004095 |