Gold/DNA-Cu2+ Complex Nanozyme-Based Aptamer Lateral Flow Assay for Highly Sensitive Detection of Kanamycin

Aptamer-based lateral flow analysis (Apt-LFAs) has promising applications in many fields. Nanozymes have demonstrated high potential in improving the performance of Apt-LFAs and have been increasingly utilized in recent studies. In this study, we developed a nanozyme-based Apt-LFA for the rapid and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2024-09, Vol.29 (19), p.4569
Hauptverfasser: Li, Xiuping, Chang, Rui, Tai, Shengmei, Mao, Minxin, Peng, Chifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aptamer-based lateral flow analysis (Apt-LFAs) has promising applications in many fields. Nanozymes have demonstrated high potential in improving the performance of Apt-LFAs and have been increasingly utilized in recent studies. In this study, we developed a nanozyme-based Apt-LFA for the rapid and sensitive detection of kanamycin by using a novel dual-functionalized AuNPs@polyA-DNA/GpG-Cu2+ nanozyme as a nanoprobe. In the nanoprobe design, the polyA-cDNA strand can discriminate a kanamycin aptamer from the kanamycin/aptamer complex, and the GpG-Cu2+ complex can amplify the detection signal by catalyzing the chromogenic reaction. The nanozyme Apt-LFA can quantify kanamycin in the range of 1–250 ng/mL with an LOD of 0.08 ng/mL, which demonstrated a 4-fold sensitivity improvement and had a wider linear range than the conventional AuNP-based LFA. The Apt-LFA was successfully applied to the detection of kanamycin in honey with good recoveries. Our dual-functionalized AuNP nanoprobe is easily prepared and can be highly compatible with the conventional AuNP-DNA-based LFA platform; thus, it can be extended to the application of Apt-LFAs for other small molecules.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules29194569