On the Locality of Formal Distributions Over Right-Symmetric and Novikov Algebras
The Dong Lemma in the theory of vertex algebras states that the locality property of formal distributions over a Lie algebra is preserved under the action of a vertex operator. A similar statement is known for associative algebras. We study local formal distributions over pre-Lie (right-symmetric),...
Gespeichert in:
Veröffentlicht in: | Izvestiâ Irkutskogo gosudarstvennogo universiteta. Seriâ "Matematika" (Online) 2024-12, Vol.50 (1), p.83-100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Dong Lemma in the theory of vertex algebras states that the locality property of formal distributions over a Lie algebra is preserved under the action of a vertex operator. A similar statement is known for associative algebras. We study local formal distributions over pre-Lie (right-symmetric), pre-associative (dendriform), and Novikov algebras to show that the analogue of the Dong Lemma holds for Novikov algebras but does not hold for pre-Lie and pre-associative ones. |
---|---|
ISSN: | 1997-7670 2541-8785 |
DOI: | 10.26516/1997-7670.2024.50.83 |