Cecal Microbial Hydrogen Cycling Potential Is Linked to Feed Efficiency Phenotypes in Chickens

In chickens, early life exposure to environmental microbes has long-lasting impacts on gastrointestinal (GI) microbiome development and host health and growth, via mechanisms that remain uncharacterized. In this study, we demonstrated that administrating a fecal microbiome transplant (FMT) from adul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in veterinary science 2022-06, Vol.9
Hauptverfasser: Ramírez, Gustavo Antonio, Keshri, Jitendra, Vahrson, Isabella, Garber, Arkadiy I., Berrang, Mark E., Cox, Nelson A., González-Cerón, Fernando, Aggrey, Samuel E., Oakley, Brian B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In chickens, early life exposure to environmental microbes has long-lasting impacts on gastrointestinal (GI) microbiome development and host health and growth, via mechanisms that remain uncharacterized. In this study, we demonstrated that administrating a fecal microbiome transplant (FMT) from adults to day-of-hatch chicks results in significantly higher body mass of birds and decreased residual feed intake (RFI), implying enhanced feed efficiency, at 6 weeks of age. To assess the potential mechanisms through which FMT affects adult bird phenotype, we combined 16 S rRNA gene amplification, metagenomic, and comparative genomic approaches to survey the composition and predicted activities of the resident microbiome of various GI tract segments. Early life FMT exposure had a long-lasting significant effect on the microbial community composition and function of the ceca but not on other GI segments. Within the ceca of 6-week-old FMT birds, hydrogenotrophic microbial lineages and genes were most differentially enriched. The results suggest that thermodynamic regulation in the cecum, in this case via hydrogenotrophic methanogenic and sulfur-cycling lineages, potentially serving as hydrogen sinks, may enhance fermentative efficiency and dietary energy harvest capacity. Our study provides a specific mechanism of action through which early-life microbiome transplants modulate market-relevant phenotypes in poultry and, thereby, may represent a significant advance toward microbiome-focused sustainable agriculture.
ISSN:2297-1769
2297-1769
DOI:10.3389/fvets.2022.904698