New approach to LHC optics commissioning for the nonlinear era
In 2017, optics commissioning strategy for low-β*operation of the CERN Large Hadron Collider (LHC) underwent a major revision. This was prompted by a need to extend the scope of beam-based commissioning at high energy, beyond the exclusively linear realm considered previously, and into the nonlinear...
Gespeichert in:
Veröffentlicht in: | Physical review. Accelerators and beams 2019-06, Vol.22 (6), p.061004, Article 061004 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2017, optics commissioning strategy for low-β*operation of the CERN Large Hadron Collider (LHC) underwent a major revision. This was prompted by a need to extend the scope of beam-based commissioning at high energy, beyond the exclusively linear realm considered previously, and into the nonlinear regime. It also stemmed from a recognition that, due to operation with crossing angles in the experimental insertions, the linear and nonlinear optics quality were intrinsically linked through potentially significant feed-down at these locations. Following the usual linear optics commissioning therefore, corrections for (normal and skew) sextupole and (normal and skew) octupole errors in the high-luminosity insertions were implemented. For the first time, the LHC now operates at top energy with beam-based corrections for nonlinear dynamics, and for the effect of the crossing scheme on beta-beating and dispersion. The new commissioning procedure has improved the control of various linear and nonlinear characteristics of the LHC, yielding clear operational benefits. |
---|---|
ISSN: | 2469-9888 2469-9888 |
DOI: | 10.1103/PhysRevAccelBeams.22.061004 |