Small-Scale Modelling of Individual Greenhouse Gas Abatement Measures in Industry
The dynamic bottom-up modelling of greenhouse gas (GHG) abatement measures in industry makes it possible to derive consistent transformation paths on the basis of heterogeneous, process-specific developments. The main focus is on the development of a transparent methodology for small-scale modelling...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2020-04, Vol.13 (7), p.1619 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dynamic bottom-up modelling of greenhouse gas (GHG) abatement measures in industry makes it possible to derive consistent transformation paths on the basis of heterogeneous, process-specific developments. The main focus is on the development of a transparent methodology for small-scale modelling and combination of individual GHG abatement measures. In this way, interactions between GHG abatement measures are taken into account when deriving industrial transformation paths. The presented three-part methodological approach comprises the preparation (1) and implementation (2) of GHG abatement measures as well as the resulting effects on the output parameters (3) in a technology mix module. In order to consider interactions in the measures implementation, year-specific overall measure matrices are created and prioritised based on the GHG abatement costs. Finally, the three-part methodology is tested in a consistent technology mix scenario. The results show that the methodology enables integrated industrial technology mix scenarios with a high level of climate ambition based on a plausible development of energy consumption and emissions. Compared to the reference scenario, the process-and energy-related emissions decrease by 90 million tCO2 (77% of the 1990 level in 2050). The developed methodology and the related technology mix scenario within the framework of the bottom-up industry model SmInd can support strategic decision-making in politics and an efficient transition to a greenhouse gas neutral industry. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en13071619 |