Transcription factors modulate RNA polymerase conformational equilibrium

RNA polymerase (RNAP) frequently pauses during the transcription of DNA to RNA to regulate gene expression. Transcription factors NusA and NusG modulate pausing, have opposing roles, but can bind RNAP simultaneously. Here we report cryo-EM reconstructions of Escherichia coli RNAP bound to NusG, or N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-03, Vol.13 (1), p.1546-1546, Article 1546
Hauptverfasser: Zhu, Chengjin, Guo, Xieyang, Dumas, Philippe, Takacs, Maria, Abdelkareem, Mo’men, Vanden Broeck, Arnaud, Saint-André, Charlotte, Papai, Gabor, Crucifix, Corinne, Ortiz, Julio, Weixlbaumer, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA polymerase (RNAP) frequently pauses during the transcription of DNA to RNA to regulate gene expression. Transcription factors NusA and NusG modulate pausing, have opposing roles, but can bind RNAP simultaneously. Here we report cryo-EM reconstructions of Escherichia coli RNAP bound to NusG, or NusA, or both. RNAP conformational changes, referred to as swivelling, correlate with transcriptional pausing. NusA facilitates RNAP swivelling to further increase pausing, while NusG counteracts this role. Their structural effects are consistent with biochemical results on two categories of transcriptional pauses. In addition, the structures suggest a cooperative mechanism of NusA and NusG during Rho-mediated transcription termination. Our results provide a structural rationale for the stochastic nature of pausing and termination and how NusA and NusG can modulate it. Pausing of RNA polymerase (RNAP) and transcription is regulated by the NusA and NusG transcription factors in bacteria. Here the authors provide structural evidence for how they interact with RNAP to carry out their pausing roles and also reveal functions for NusA and NusG in transcription termination.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29148-0