Advancing Adverse Drug Reaction Prediction with Deep Chemical Language Model for Drug Safety Evaluation
The accurate prediction of adverse drug reactions (ADRs) is essential for comprehensive drug safety evaluation. Pre-trained deep chemical language models have emerged as powerful tools capable of automatically learning molecular structural features from large-scale datasets, showing promising capabi...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-04, Vol.25 (8), p.4516 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accurate prediction of adverse drug reactions (ADRs) is essential for comprehensive drug safety evaluation. Pre-trained deep chemical language models have emerged as powerful tools capable of automatically learning molecular structural features from large-scale datasets, showing promising capabilities for the downstream prediction of molecular properties. However, the performance of pre-trained chemical language models in predicting ADRs, especially idiosyncratic ADRs induced by marketed drugs, remains largely unexplored. In this study, we propose MoLFormer-XL, a pre-trained model for encoding molecular features from canonical SMILES, in conjunction with a CNN-based model to predict drug-induced QT interval prolongation (DIQT), drug-induced teratogenicity (DIT), and drug-induced rhabdomyolysis (DIR). Our results demonstrate that the proposed model outperforms conventional models applied in previous studies for predicting DIQT, DIT, and DIR. Notably, an analysis of the learned linear attention maps highlights amines, alcohol, ethers, and aromatic halogen compounds as strongly associated with the three types of ADRs. These findings hold promise for enhancing drug discovery pipelines and reducing the drug attrition rate due to safety concerns. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms25084516 |