Existence and concentration of solutions for nonautomous Schrödinger–Poisson systems with critical growth
In this paper, we study the following Schrödinger–Poisson system \begin{equation*} \begin{cases} -\Delta u+u+\mu \phi u=\lambda f(x,u)+u^5\quad & \mbox{in }\mathbb{R}^3,\\ -\Delta \phi=\mu u^2\quad & \mbox{in }\mathbb{R}^3, \end{cases} \end{equation*} where $\mu$, $\lambda>0$ are paramete...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2017-01, Vol.2017 (88), p.1-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the following Schrödinger–Poisson system \begin{equation*} \begin{cases} -\Delta u+u+\mu \phi u=\lambda f(x,u)+u^5\quad & \mbox{in }\mathbb{R}^3,\\ -\Delta \phi=\mu u^2\quad & \mbox{in }\mathbb{R}^3, \end{cases} \end{equation*} where $\mu$, $\lambda>0$ are parameters and $f\in C(\mathbb{R}^3\times \mathbb{R},\mathbb{R})$. Under certain general assumptions on $f(x,u)$, we prove the existence and concentration of solutions of the above system for each $\mu>0$ and $\lambda$ sufficiently large. Our main result can be viewed as an extension of the results by Zhang [Nonlinear Anal. 75(2012), 6391–6401]. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2017.1.88 |