Existence and concentration of solutions for nonautomous Schrödinger–Poisson systems with critical growth

In this paper, we study the following Schrödinger–Poisson system \begin{equation*} \begin{cases} -\Delta u+u+\mu \phi u=\lambda f(x,u)+u^5\quad & \mbox{in }\mathbb{R}^3,\\ -\Delta \phi=\mu u^2\quad & \mbox{in }\mathbb{R}^3, \end{cases} \end{equation*} where $\mu$, $\lambda>0$ are paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of qualitative theory of differential equations 2017-01, Vol.2017 (88), p.1-12
1. Verfasser: Ye, Yiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the following Schrödinger–Poisson system \begin{equation*} \begin{cases} -\Delta u+u+\mu \phi u=\lambda f(x,u)+u^5\quad & \mbox{in }\mathbb{R}^3,\\ -\Delta \phi=\mu u^2\quad & \mbox{in }\mathbb{R}^3, \end{cases} \end{equation*} where $\mu$, $\lambda>0$ are parameters and $f\in C(\mathbb{R}^3\times \mathbb{R},\mathbb{R})$. Under certain general assumptions on $f(x,u)$, we prove the existence and concentration of solutions of the above system for each $\mu>0$ and $\lambda$ sufficiently large. Our main result can be viewed as an extension of the results by Zhang [Nonlinear Anal. 75(2012), 6391–6401].
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2017.1.88