Optimal rearrangement problem and normalized obstacle problem in the fractional setting

We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (– , 0 < < 1, and the Gagliardo seminorm | . We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satisfies which h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nonlinear analysis 2020-03, Vol.9 (1), p.1592-1606
Hauptverfasser: Bonder, Julián Fernández, Cheng, Zhiwei, Mikayelyan, Hayk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (– , 0 < < 1, and the Gagliardo seminorm | . We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satisfies which happens to be the fractional analogue of the normalized obstacle problem =
ISSN:2191-9496
2191-950X
DOI:10.1515/anona-2020-0067