Optimal rearrangement problem and normalized obstacle problem in the fractional setting
We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (– , 0 < < 1, and the Gagliardo seminorm | . We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satisfies which h...
Gespeichert in:
Veröffentlicht in: | Advances in nonlinear analysis 2020-03, Vol.9 (1), p.1592-1606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an optimal rearrangement minimization problem involving the fractional Laplace operator (–
, 0 <
< 1, and the Gagliardo seminorm |
. We prove the existence of the unique minimizer, analyze its properties as well as derive the non-local and highly non-linear PDE it satisfies
which happens to be the fractional analogue of the normalized obstacle problem
= |
---|---|
ISSN: | 2191-9496 2191-950X |
DOI: | 10.1515/anona-2020-0067 |