Campylobacter jejuni induces autoimmune peripheral neuropathy via Sialoadhesin and Interleukin-4 axes
Campylobacter jejuni is a leading cause of gastroenteritis that has been causally linked with development of the autoimmune peripheral neuropathy Guillain Barré Syndrome (GBS). Previously, we showed that C. jejuni isolates from human enteritis patients induced Type1/17-cytokine dependent colitis in...
Gespeichert in:
Veröffentlicht in: | Gut microbes 2022-12, Vol.14 (1), p.2064706 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Campylobacter jejuni is a leading cause of gastroenteritis that has been causally linked with development of the autoimmune peripheral neuropathy Guillain Barré Syndrome (GBS). Previously, we showed that C. jejuni isolates from human enteritis patients induced Type1/17-cytokine dependent colitis in interleukin-10 (IL-10)
−/−
mice, while isolates from GBS patients colonized these mice without colitis but instead induced autoantibodies that cross-reacted with the sialylated oligosaccharide motifs on the LOS of GBS-associated C. jejuni and the peripheral nerve gangliosides. We show here that infection of IL-10
−/−
mice with the GBS but not the colitis isolate led to sciatic nerve inflammation and abnormal gait and hind limb movements, with character and timing consistent with this syndrome in humans. Autoantibody responses and associated nerve histologic changes were dependent on IL-4 production by CD4 T cells. We further show that Siglec-1 served as a central antigen presenting cell receptor mediating the uptake of the GBS isolates via interaction with the sialylated oligosaccharide motifs found specifically on the LOS of GBS-associated C. jejuni, and the ensuing T cell differentiation and autoantibody elicitation. Sialylated oligosaccharide motifs on the LOS of GBS-associated C. jejuni therefore acted as both the Siglec-1-ligand for phagocytosis, as well as the epitope for autoimmunity. Overall, we present a mouse model of an autoimmune disease induced directly by a bacterium that is dependent upon Siglec-1 and IL-4. We also demonstrate the negative regulatory role of IL-10 in C. jejuni induced autoimmunity and provide IL-4 and Siglec-1 blockade as potential therapeutic interventions against GBS. |
---|---|
ISSN: | 1949-0976 1949-0984 1949-0984 |
DOI: | 10.1080/19490976.2022.2064706 |