Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice

Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca 2+ elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hypere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-12, Vol.13 (1), p.7872-17, Article 7872
Hauptverfasser: Institoris, Adam, Vandal, Milène, Peringod, Govind, Catalano, Christy, Tran, Cam Ha, Yu, Xinzhu, Visser, Frank, Breiteneder, Cheryl, Molina, Leonardo, Khakh, Baljit S., Nguyen, Minh Dang, Thompson, Roger J., Gordon, Grant R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional hyperemia occurs when enhanced neuronal activity signals to increase local cerebral blood flow (CBF) to satisfy regional energy demand. Ca 2+ elevation in astrocytes can drive arteriole dilation to increase CBF, yet affirmative evidence for the necessity of astrocytes in functional hyperemia in vivo is lacking. In awake mice, we discovered that functional hyperemia is bimodal with a distinct early and late component whereby arteriole dilation progresses as sensory stimulation is sustained. Clamping astrocyte Ca 2+ signaling in vivo by expressing a plasma membrane Ca 2+ ATPase (CalEx) reduces sustained but not brief sensory-evoked arteriole dilation. Elevating astrocyte free Ca 2+ using chemogenetics selectively augments sustained hyperemia. Antagonizing NMDA-receptors or epoxyeicosatrienoic acid production reduces only the late component of functional hyperemia, leaving brief increases in CBF to sensory stimulation intact. We propose that a fundamental role of astrocyte Ca 2+ is to amplify functional hyperemia when neuronal activation is prolonged. Neuronal activity increases local cerebral blood flow (CBF) to satisfy metabolic demand, yet the role of astrocytes in this phenomenon is controversial. Here, the authors show that astrocytes amplify CBF only when neuronal activity is sustained.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-35383-2