Immune cell residency in the nasal mucosa may partially explain respiratory disease severity across the age range

Previous studies focusing on the age disparity in COVID-19 severity have suggested that younger individuals mount a more robust innate immune response in the nasal mucosa after infection with SARS-CoV-2. However, it is unclear if this reflects increased immune activation or increased immune residenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-08, Vol.11 (1), p.15927-15927, Article 15927
Hauptverfasser: Winkley, Konner, Banerjee, Dithi, Bradley, Todd, Koseva, Boryana, Cheung, Warren A., Selvarangan, Rangaraj, Pastinen, Tomi, Grundberg, Elin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies focusing on the age disparity in COVID-19 severity have suggested that younger individuals mount a more robust innate immune response in the nasal mucosa after infection with SARS-CoV-2. However, it is unclear if this reflects increased immune activation or increased immune residence in the nasal mucosa. We hypothesized that immune residency in the nasal mucosa of healthy individuals may differ across the age range. We applied single-cell RNA-sequencing and measured the cellular composition and transcriptional profile of the nasal mucosa in 35 SARS-CoV-2 negative children and adults, ranging in age from 4 months to 65 years. We analyzed in total of ~ 30,000 immune and epithelial cells and found that age and immune cell proportion in the nasal mucosa are inversely correlated, with little evidence for structural changes in the transcriptional state of a given cell type across the age range. Orthogonal validation by epigenome sequencing indicate that it is especially cells of the innate immune system that underlie the age-association. Additionally, we characterize the predominate immune cell type in the nasal mucosa: a resident T cell like population with potent antiviral properties. These results demonstrate fundamental changes in the immune cell makeup of the uninfected nasal mucosa over the lifespan. The resource we generate here is an asset for future studies focusing on respiratory infection and immunization strategies.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-95532-3