Composition and luminescence properties of highly robust green-emitting LuAG:Ce/Al2O3 composite phosphor ceramics for high-power solid-state lighting
The major advantage of laser lighting over white light-emitting-diode is the possibility to achieve ultra-high luminance. However, phosphors usually suffer laser-induced luminescence saturation, which limits the peak luminance of laser lighting devices. The aim of the present study is to develop LuA...
Gespeichert in:
Veröffentlicht in: | Journal of advanced ceramics 2023-03, Vol.12 (3), p.625-633 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The major advantage of laser lighting over white light-emitting-diode is the possibility to achieve ultra-high luminance. However, phosphors usually suffer laser-induced luminescence saturation, which limits the peak luminance of laser lighting devices. The aim of the present study is to develop LuAG:Ce/Al2O3 composite ceramics (LACCs) with a high saturation threshold for high-luminance laser lighting. Owning to the rigid crystal structure, proper synthetic process, and optimized thermal design, the LACCs possess small thermal quenching (16% loss in luminescence at 225 ℃), high quantum yield (> 95%), and excellent luminescence properties. When the LACCs are irradiated by blue laser diodes in a reflection mode, a high luminous flux of 4634 lm and luminous efficacy of 283 lm·W−1 are realized. Furthermore, they show no sign of luminescence saturation even when the power density reaches 20.5 W·mm−2. With these favorable properties, the designed LACCs show great potential in high-luminance laser lighting. |
---|---|
ISSN: | 2226-4108 2227-8508 |
DOI: | 10.26599/JAC.2023.9220710 |