Induction of Trained Immunity Protects Neonatal Mice Against Microbial Sepsis by Boosting Both the Inflammatory Response and Antimicrobial Activity
Background: Neonates are susceptible to a wide range of microbial infection and at a high risk to develop severe sepsis and septic shock. Emerged evidence has shown that induction of trained immunity triggers a much stronger inflammatory response in adult monocytes/macrophages, thereby conferring pr...
Gespeichert in:
Veröffentlicht in: | Journal of inflammation research 2022-01, Vol.15, p.3829-3845 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Neonates are susceptible to a wide range of microbial infection and at a high risk to develop severe sepsis and septic shock. Emerged evidence has shown that induction of trained immunity triggers a much stronger inflammatory response in adult monocytes/macrophages, thereby conferring protection against microbial infection. Methods: This study was carried out to examine whether trained immunity is inducible and exerts its protection against microbial sepsis in neonates. Results: Induction of trained immunity by Bacillus Calmette-Guerin (BCG) plus bacterial lipoprotein (BLP) protected neonatal mice against cecal slurry peritonitis-induced polymicrobial sepsis, and this protection is associated with elevated circulating inflammatory cytokines, increased neutrophil recruitment, and accelerated bacterial clearance. In vitro stimulation of neonatal murine macrophages with BCG+BLP augmented both inflammatory response and antimicrobial activity. Notably, BCG+BLP stimulation resulted in epigenetic remodeling characterized by histone modifications with enhanced H3K4me3, H3K27Ac, and suppressed H3K9me3 at the promoters of the targeted inflammatory and antimicrobial genes. Critically, BCG+BLP stimulation led to a shift in cellular metabolism with increased glycolysis, which is the prerequisite for subsequent BCG+BLP-triggered epigenetic reprogramming and augmented inflammatory response and antimicrobial capacity. Conclusion: These results illustrate that BCG+BLP induces trained immunity in neonates, thereby protecting against microbial infection by boosting both inflammatory and antimicrobial responses. Keywords: trained immunity, inflammatory response, antimicrobial activity, epigenetic reprogramming, intracellular metabolic rewiring, neonatal sepsis |
---|---|
ISSN: | 1178-7031 1178-7031 |
DOI: | 10.2147/JIR.S363995 |