Multi-agent learning via gradient ascent activity-based credit assignment

We consider the situation in which cooperating agents learn to achieve a common goal based solely on a global return that results from all agents’ behavior. The method proposed is based on taking into account the agents’ activity , which can be any additional information to help solving multi-agent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-09, Vol.13 (1), p.15256-7, Article 15256
Hauptverfasser: Sabri, Oussama, Lehéricy, Luc, Muzy, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the situation in which cooperating agents learn to achieve a common goal based solely on a global return that results from all agents’ behavior. The method proposed is based on taking into account the agents’ activity , which can be any additional information to help solving multi-agent decentralized learning problems. We propose a gradient ascent algorithm and assess its performance on synthetic data.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-42448-9