Enhanced Enzymatic Performance of Immobilized Pseudomonas fluorescens Lipase on ZIF-8@ZIF-67 and Its Application to the Synthesis of Neryl Acetate with Transesterification Reaction
In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was furth...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2024-06, Vol.29 (12), p.2922 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating
lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was further treated with glutaraldehyde to improve protein immobilization yield. Under optimal immobilization conditions, the specific hydrolytic activity of PFL@ZIF-8@ZIF-67 was 20.4 times higher than that of the free PFL. The prepared biocatalyst was characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). Additionally, the thermal stability of PFL@ZIF-8@ZIF-67 at 50 °C was significantly improved compared to the free PFL. After 7 weeks at room temperature, PFL@ZIF-8@ZIF-67 retained 78% of the transesterification activity, while the free enzyme was only 29%. Finally, PFL@ZIF-8@ZIF-67 was applied to the neryl acetate preparation in a solvent-free system, and the yield of neryl acetate reached 99% after 3 h of reaction. After 10 repetitions, the yields of neryl acetate catalyzed by PFL@ZIF-8@ZIF-67 and the free PFL were 80% and 43%, respectively. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules29122922 |