The Toxicity Assessment of Iron Oxide (Fe₃O₄) Nanoparticles on Physical and Biochemical Quality of Rainbow Trout Spermatozoon
The aim of this study was to evaluate the in vitro effect of different doses (50, 100, 200, 400, and 800 mg/L) of Fe₃O₄ nanoparticles (NPs) at 4 °C for 24 h on the kinematics of rainbow trout ( , Walbaum, 1792) spermatozoon. Firstly, Fe₃O₄ NPs were prepared at about 30 nm from Iron (III) chloride, I...
Gespeichert in:
Veröffentlicht in: | Toxics (Basel) 2018-10, Vol.6 (4), p.62 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to evaluate the in vitro effect of different doses (50, 100, 200, 400, and 800 mg/L) of Fe₃O₄ nanoparticles (NPs) at 4 °C for 24 h on the kinematics of rainbow trout (
, Walbaum, 1792) spermatozoon. Firstly, Fe₃O₄ NPs were prepared at about 30 nm from Iron (III) chloride, Iron (II) chloride, and NH₃ via a co-precipitation synthesis technique. Then, the prepared Fe₃O₄ NPs were characterized by different instrumental techniques for their chemical structure, purity, morphology, surface properties, and thermal behavior. The size, microstructure, and morphology of the prepared Fe₃O₄ NPs were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) spectroscopy, and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). The thermal properties of the Fe₃O₄ NPs were determined with thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimeter (DSC) analysis techniques. According to our results, there were statistically significant (
< 0.05) decreases in the velocities of spermatozoon after treatment with 400 mg/L Fe₃O₄ NPs. The superoxide dismutase (SOD) and catalase (CAT) activities were significant (
< 0.05) decrease after 100 mg/L in after exposure to Fe₃O₄ NPs in 24 h. As the doses of Fe₃O₄ NPs increases, the level of malondialdehyde (MDA) and total glutathione (tGSH) significantly (
< 0.05) increased at doses of 400 and 800 mg/L. |
---|---|
ISSN: | 2305-6304 2305-6304 |
DOI: | 10.3390/toxics6040062 |