Equivariant Hodge polynomials of heavy/light moduli spaces
Let $\overline {\mathcal {M}}_{g, m|n}$ denote Hassett’s moduli space of weighted pointed stable curves of genus g for the heavy/light weight data $$\begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),\end{align*}$$ and let $\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$ be the locus par...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2024-03, Vol.12, Article e34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\overline {\mathcal {M}}_{g, m|n}$
denote Hassett’s moduli space of weighted pointed stable curves of genus g for the heavy/light weight data
$$\begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),\end{align*}$$
and let
$\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$
be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for
$(S_m\times S_n)$
-equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for
$S_{n}$
-equivariant Hodge–Deligne polynomials of
$\overline {\mathcal {M}}_{g,n}$
and
$\mathcal {M}_{g,n}$
. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2024.20 |