Equivariant Hodge polynomials of heavy/light moduli spaces

Let $\overline {\mathcal {M}}_{g, m|n}$ denote Hassett’s moduli space of weighted pointed stable curves of genus g for the heavy/light weight data $$\begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),\end{align*}$$ and let $\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$ be the locus par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2024-03, Vol.12, Article e34
Hauptverfasser: Kannan, Siddarth, Serpente, Stefano, Yun, Claudia He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\overline {\mathcal {M}}_{g, m|n}$ denote Hassett’s moduli space of weighted pointed stable curves of genus g for the heavy/light weight data $$\begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),\end{align*}$$ and let $\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$ be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for $(S_m\times S_n)$ -equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for $S_{n}$ -equivariant Hodge–Deligne polynomials of $\overline {\mathcal {M}}_{g,n}$ and $\mathcal {M}_{g,n}$ .
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2024.20