Orthogonal regulation of phytochrome B abundance by stress-specific plastidial retrograde signaling metabolite
Plant survival necessitates constant monitoring of fluctuating light and balancing growth demands with adaptive responses, tasks mediated via interconnected sensing and signaling networks. Photoreceptor phytochrome B (phyB) and plastidial retrograde signaling metabolite methylerythritol cyclodiphosp...
Gespeichert in:
Veröffentlicht in: | Nature communications 2019-07, Vol.10 (1), p.2904-10, Article 2904 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant survival necessitates constant monitoring of fluctuating light and balancing growth demands with adaptive responses, tasks mediated via interconnected sensing and signaling networks. Photoreceptor phytochrome B (phyB) and plastidial retrograde signaling metabolite methylerythritol cyclodiphosphate (MEcPP) are evolutionarily conserved sensing and signaling components eliciting responses through unknown connection(s). Here, via a suppressor screen, we identify two phyB mutant alleles that revert the dwarf and high salicylic acid phenotypes of the high MEcPP containing mutant
ceh1
. Biochemical analyses show high phyB protein levels in MEcPP-accumulating plants resulting from reduced expression of phyB antagonists and decreased auxin levels. We show that auxin treatment negatively regulates phyB abundance. Additional studies identify CAMTA3, a MEcPP-activated calcium-dependent transcriptional regulator, as critical for maintaining phyB abundance. These studies provide insights into biological organization fundamentals whereby a signal from a single plastidial metabolite is transduced into an ensemble of regulatory networks controlling the abundance of phyB, positioning plastids at the information apex directing adaptive responses.
MEcPP is an evolutionarily conserved metabolite that acts as a plastid-to-nucleus retrograde signal to regulate adaptive responses to fluctuating light. Here the authors show that MEcPP regulates seedling development by stabilizing the phyB photoreceptor in an auxin and Ca
2+
dependent manner. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-10867-w |