Mechanical, Durability and Embodied Energy Analysis of Geopolymer Concrete with Fly Ash, GGBFS and Glass Fiber

Concrete is the second most widely used material next to the basic human needs. As the demand for concrete as a structural material grows, so does the demand for ordinary Portland cement (OPC).Global warming, on the other hand, has emerged as a major concern. Greenhouse gases, such as carbon dioxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2023-01, Vol.455, p.3006
Hauptverfasser: L, Nishanth, Patil, Nayana N., N A, Ganesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Concrete is the second most widely used material next to the basic human needs. As the demand for concrete as a structural material grows, so does the demand for ordinary Portland cement (OPC).Global warming, on the other hand, has emerged as a major concern. Greenhouse gases, such as carbon dioxide emissions caused by human activity, are responsible for global warming. The cement industry is a major contributor to carbon dioxide emissions because it produces the same amount of carbon dioxide as their product. A sustainable alternative material that completely eliminates cement is Geopolymer concrete. This study presents results of an experimental program to determine mechanical, durability and embodied energy of Glass fibre reinforced Geopolymer Concrete contains fly ash and Ground Granulated Blast Furnace Slag (GGBFS) as binder materials in a constant proportion (50%×50%) each. Alkaline liquids to binder ratio by mass as 0.35 with proportion of sodium silicate (Na2SiO3) solution-to-sodium hydroxide (NaOH) 10 Morality solution by mass as 2.5. Coarse and fine aggregates are used in the proportion of 60:40, and Glass fibres are varied by percentages of 0(control mix), 1, 1.5 and 2 by volume of binder material. In the geopolymer concrete composite for the addition of 1% glass fiber compressive strength 21.95%, split tensile strength 52.5% and flexural strength 76.47% were found to be increased when compared with control mix. And results for 1% glass fiber found to be 52.82 MPa, 6.1 MPa and 15 MPa respectively, were as control mix found to be 43.3 MPa, 4 MPa and 8.5 MPa respectively. Highest residual compressive strength was attained for mix with 1% Glass fibres with 52.8MPa before and 48.9MPa after acid exposure. It is observed that least percentage of water absorption was attained for mix with 1% Glass fibres.
ISSN:2267-1242
2267-1242
DOI:10.1051/e3sconf/202345503006