Fabrication of Ultra-Sharp Tips by Dynamic Chemical Etching Process for Scanning Near-Field Microwave Microscopy
This work details an effective dynamic chemical etching technique to fabricate ultra-sharp tips for Scanning Near-Field Microwave Microscopy (SNMM). The protruded cylindrical part of the inner conductor in a commercial SMA (Sub Miniature A) coaxial connector is tapered by a dynamic chemical etching...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2023-03, Vol.23 (6), p.3360 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work details an effective dynamic chemical etching technique to fabricate ultra-sharp tips for Scanning Near-Field Microwave Microscopy (SNMM). The protruded cylindrical part of the inner conductor in a commercial SMA (Sub Miniature A) coaxial connector is tapered by a dynamic chemical etching process using ferric chloride. The technique is optimized to fabricate ultra-sharp probe tips with controllable shapes and tapered down to have a radius of tip apex around ∼1 μm. The detailed optimization facilitated the fabrication of reproducible high-quality probes suitable for non-contact SNMM operation. A simple analytical model is also presented to better describe the dynamics of the tip formation. The near-field characteristics of the tips are evaluated by finite element method (FEM) based electromagnetic simulations and the performance of the probes has been validated experimentally by means of imaging a metal-dielectric sample using the in-house scanning near-field microwave microscopy system. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s23063360 |