Re-establishment of ice-surface velocity field and snow surface elevation change around Dome Argus, East Antarctica
In January 2016, static GPS measurements were carried out in a 30 × 30 km2 area centered around Kunlun station at Dome Argus (Dome A), East Antarctica, to acquire high-precision 3-D geodetic coordinates at 49 sites. By comparing the coordinates with previous GPS measurements in 2008 and 2013 at the...
Gespeichert in:
Veröffentlicht in: | Annals of glaciology 2019-04, Vol.60 (78), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In January 2016, static GPS measurements were carried out in a 30 × 30 km2 area centered around Kunlun station at Dome Argus (Dome A), East Antarctica, to acquire high-precision 3-D geodetic coordinates at 49 sites. By comparing the coordinates with previous GPS measurements in 2008 and 2013 at the same sites, we constructed a detailed and long-term record of the ice-surface velocity field, 2008–2016, around Dome A. During this time span, the estimated ice-surface velocity ranges from 0.8 ± 0.3 to 28.7 ± 1.6 cm a−1, with a mean of 10.4 ± 0.3 cm a−1. From 2013 to 2016, the surface elevation of most Dome A areas exhibits a rising trend, and the maximum increase of snow surface elevation is 84.8 cm. The mean snow surface elevation change rate at Dome A is estimated to be 6.6 ± 0.7 cm a−1. The difference of 1.0 cm a−1 between the snow surface change rate derived from GPS and pole-height change rate from surface mass balance is suspected to be a result of a combination of firn densification and basal melt under Dome A. |
---|---|
ISSN: | 0260-3055 1727-5644 |
DOI: | 10.1017/aog.2019.3 |