Quantum computing for finance: Overview and prospects

We discuss how quantum computation can be applied to financial problems, providing an overview of current approaches and potential prospects. We review quantum optimization algorithms, and expose how quantum annealers can be used to optimize portfolios, find arbitrage opportunities, and perform cred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews in physics 2019-11, Vol.4, p.100028, Article 100028
Hauptverfasser: Orús, Román, Mugel, Samuel, Lizaso, Enrique
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss how quantum computation can be applied to financial problems, providing an overview of current approaches and potential prospects. We review quantum optimization algorithms, and expose how quantum annealers can be used to optimize portfolios, find arbitrage opportunities, and perform credit scoring. We also discuss deep-learning in finance, and suggestions to improve these methods through quantum machine learning. Finally, we consider quantum amplitude estimation, and how it can result in a quantum speed-up for Monte Carlo sampling. This has direct applications to many current financial methods, including pricing of derivatives and risk analysis. Perspectives are also discussed.
ISSN:2405-4283
2405-4283
DOI:10.1016/j.revip.2019.100028