AGC family kinase 1 participates in trogocytosis but not in phagocytosis in Entamoeba histolytica

The protozoan parasite Entamoeba histolytica is the aetiologic agent of amoebiasis, an endemic infection in developing countries with considerable morbidity and mortality. Recently, trogocytosis has been recognized as the key step in amoebic cytolysis and invasion, a paradigm shift in understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-07, Vol.8 (1), p.101-12, Article 101
Hauptverfasser: Somlata, Nakada-Tsukui, Kumiko, Nozaki, Tomoyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The protozoan parasite Entamoeba histolytica is the aetiologic agent of amoebiasis, an endemic infection in developing countries with considerable morbidity and mortality. Recently, trogocytosis has been recognized as the key step in amoebic cytolysis and invasion, a paradigm shift in understanding pathogenicity of this organism. Here we report that AGC family kinase 1 is specifically involved in trogocytosis of live human cells and does not participate in phagocytosis of dead cells. Live imaging reveals localization of this kinase in the long and thin tunnels formed during trogocytosis but not in the trogosomes (endosomes formed after trogocytosis). Silencing of the specific gene leads to a defect in CHO cell destruction and trogocytosis while other endocytic processes remain unaffected. The results suggest that the trogocytic pathway is likely to be different from phagocytosis though many of the steps and molecules involved may be common. Entamoeba histolytica can kill host cells by trogocytosis, while it ingests dead cells by phagocytosis. Here, Somlata et al. show that EhAGCK1, an AGC family kinase, is specifically involved in trogocytosis, shedding light on the molecular differences between trogocytosis and phagocytosis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-00199-y