Solutions of Helmholtz and Schrödinger Equations with Side Condition and Nonregular Separation of Variables

Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schröd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2012-01, Vol.8, p.089
1. Verfasser: Broadbridge, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Olver and Rosenau studied group-invariant solutions of (generally nonlinear) partial differential equations through the imposition of a side condition. We apply a similar idea to the special case of finite-dimensional Hamiltonian systems, namely Hamilton-Jacobi, Helmholtz and time-independent Schrödinger equations with potential on N-dimensional Riemannian and pseudo-Riemannian manifolds, but with a linear side condition, where more structure is available. We show that the requirement of N-1 commuting second-order symmetry operators, modulo a second-order linear side condition corresponds to nonregular separation of variables in an orthogonal coordinate system, characterized by a generalized Stäckel matrix. The coordinates and solutions obtainable through true nonregular separation are distinct from those arising through regular separation of variables. We develop the theory for these systems and provide examples. [ProQuest: [...] denotes formulae omitted.]
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2012.089