Biochar Chemistry in a Weathered Tropical Soil: Kinetics of Phosphorus Sorption
The phosphorus (P) chemistry of biochar (BC)-amended soils is poorly understood. This statement is based on the lack of published research attempting a comprehensive characterization of biochar’s influence on P sorption. Therefore, this study addressed the kinetic limitations of these processes. Thi...
Gespeichert in:
Veröffentlicht in: | Agriculture (Basel) 2021-04, Vol.11 (4), p.295 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phosphorus (P) chemistry of biochar (BC)-amended soils is poorly understood. This statement is based on the lack of published research attempting a comprehensive characterization of biochar’s influence on P sorption. Therefore, this study addressed the kinetic limitations of these processes. This was accomplished using a fast pyrolysis biochar made from a mix of waste materials applied to a highly weathered Latossolo Vermelho distrofico (Oxisol) from São Paulo, Brazil. Standard method (batch method) was used. The sorption kinetic studies indicated that P sorption in both cases, soil (S) and soil-biochar (SBC), had a relatively fast initial reaction between 0 to 5 min. This may have happened because adding biochar to the soil decreased P sorption capacity compared to the mineral soil alone. Presumably, this is a result of: (i) Inorganic phosphorus desorbed from biochar was resorbed onto the mineral soil; (ii) charcoal particles physically covered P sorption locations on soil; or (iii) the pH increased when BC was added SBC and the soil surface became more negatively charged, thus increasing anion repulsion and decreasing P sorption. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture11040295 |