Effect of Small Molecular Organic Acids on the Structure and Catalytic Performance of Sol–Gel Prepared Cobalt Cerium Oxides towards Toluene Combustion

Cobalt cerium oxide catalysts with small molecular organic acids (SOAs) as chelating agents were prepared via the sol–gel method and investigated for the complete oxidation of toluene. Four kinds of natural SOAs, i.e. malic acid (MA), citric acid (CA), glycolic acid (GA), and tartaric acid (TA), wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2019-05, Vol.9 (5), p.483
Hauptverfasser: Chen, Jianmeng, Lin, Junhong, Chen, Jinghuan, Wang, Jiade
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cobalt cerium oxide catalysts with small molecular organic acids (SOAs) as chelating agents were prepared via the sol–gel method and investigated for the complete oxidation of toluene. Four kinds of natural SOAs, i.e. malic acid (MA), citric acid (CA), glycolic acid (GA), and tartaric acid (TA), were selected. The effect of organic acids on the composition, structure, morphology and catalytic performance of metal oxides is discussed in details. The cobalt cerium oxides catalysts were characterized by various techniques, including TG–DSC, XRD, SEM–EDS, N2–adsorption and desorption, XPS, and H2–TPR analyses. The results show that the nature of organic acids influenced the hydrolysis, condensation and calcination processes, as well as strongly affected the textural and physicochemical properties of the metal oxides synthesized. The best catalytic activity was obtained with the CoCe–MA catalyst, and the toluene conversion reached 90% at 242 °C. This outstanding catalytic activity could be related to its textural, redox properties and unique surface compositions and oxidation states. In addition, the CoCe–MA catalyst also showed excellent stability in long–time activity test.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal9050483