Biogenic Synthesis of AgNPs Using Aqueous Bark Extract of Aesculus indica for Antioxidant and Antimicrobial Applications

Nanotechnology has received a lot of attention from the scientific community because of the greater surface-to-volume ratio of nanomaterials, which phenomenally increases their efficacy in practical applications. Among the various synthesis techniques, the biogenic or green synthesis of nanomaterial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2022-02, Vol.12 (2), p.252
Hauptverfasser: Riaz, Muhammad, Suleman, Amrina, Ahmad, Pervaiz, Khandaker, Mayeen Uddin, Alqahtani, Amal, Bradley, David A., Khan, Muhammad Qayyum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanotechnology has received a lot of attention from the scientific community because of the greater surface-to-volume ratio of nanomaterials, which phenomenally increases their efficacy in practical applications. Among the various synthesis techniques, the biogenic or green synthesis of nanomaterials shows advantages over other techniques such as physical, chemical, etc. This study reports the biogenic synthesis of silver nanoparticles (AgNPs) using aqueous bark extract of Aesculus indica. The as-synthesized NPs were characterized by UV–visible, FT-IR, XRD, and SEM, and then tested for their antioxidant and antimicrobial potency. We have identified phenols, flavonoids, tannins, saponins, and carbohydrates in the bark extract of A. indica. The extract-loaded-AgNPs showed the highest inhibition for Staphylococcus aureus (28.0 mm), Pseudomonas aeruginosa (17.66 mm), Escherichia coli (14.33 mm), Acetobacter serratia (14.00 mm), and Klebsiella pneumoniae (12.33 mm). The methanolic bark extract inhibited S. aureus (24.33 mm), P. aeruginosa (10.66 mm), E. coli (11.33 mm), A. serratia (9.66 mm), and K. pneumoniae (11.66 mm). Aqueous bark extract inhibited S. aureus (22.33 mm), P. aeruginosa (8.33 mm), E. coli (9.33 mm), A. serratiaa (8.33 mm), and K. pneumoniae (9.66 mm). Its aqueous extract showed the highest antioxidant potency; IC50 (0.175 µg/mL) followed by the methanolic extract; IC50 (0.210 µg/mL) and extract-loaded nanoparticles; IC50 (0.901 µg/mL). Our findings provide meaningful interest for antioxidant, anti-microbial applications of, and AgNPs synthesis by, aqueous bark extract of A. indica.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst12020252