Visual interpretable MRI fine grading of meniscus injury for intelligent assisted diagnosis and treatment

Meniscal injury represents a common type of knee injury, accounting for over 50% of all knee injuries. The clinical diagnosis and treatment of meniscal injury heavily rely on magnetic resonance imaging (MRI). However, accurately diagnosing the meniscus from a comprehensive knee MRI is challenging du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine 2024-04, Vol.7 (1), p.97-97, Article 97
Hauptverfasser: Luo, Anlin, Gou, Shuiping, Tong, Nuo, Liu, Bo, Jiao, Licheng, Xu, Hu, Wang, Yingchun, Ding, Tan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meniscal injury represents a common type of knee injury, accounting for over 50% of all knee injuries. The clinical diagnosis and treatment of meniscal injury heavily rely on magnetic resonance imaging (MRI). However, accurately diagnosing the meniscus from a comprehensive knee MRI is challenging due to its limited and weak signal, significantly impeding the precise grading of meniscal injuries. In this study, a visual interpretable fine grading (VIFG) diagnosis model has been developed to facilitate intelligent and quantified grading of meniscal injuries. Leveraging a multilevel transfer learning framework, it extracts comprehensive features and incorporates an attributional attention module to precisely locate the injured positions. Moreover, the attention-enhancing feedback module effectively concentrates on and distinguishes regions with similar grades of injury. The proposed method underwent validation on FastMRI_Knee and Xijing_Knee dataset, achieving mean grading accuracies of 0.8631 and 0.8502, surpassing the state-of-the-art grading methods notably in error-prone Grade 1 and Grade 2 cases. Additionally, the visually interpretable heatmaps generated by VIFG provide accurate depictions of actual or potential meniscus injury areas beyond human visual capability. Building upon this, a novel fine grading criterion was introduced for subtypes of meniscal injury, further classifying Grade 2 into 2a, 2b, and 2c, aligning with the anatomical knowledge of meniscal blood supply. It can provide enhanced injury-specific details, facilitating the development of more precise surgical strategies. The efficacy of this subtype classification was evidenced in 20 arthroscopic cases, underscoring the potential enhancement brought by intelligent-assisted diagnosis and treatment for meniscal injuries.
ISSN:2398-6352
2398-6352
DOI:10.1038/s41746-024-01082-z